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Nonlinear spectroscopy provides insights into dynamics, but the response functions required for its inter-
pretation pose a challenge to theorists. We proposed an approach in which the fifth-order response function
fRs5dst1,t2dg was expressed as a two-time classical time correlation function(TCF). Here, we present TCF
theory results forRs5dst1,t2d in liquid xenon. Using a first-order dipole-induced dipole polarizability model, the
result is compared to an exact numerical calculation showing remarkable agreement. In addition,Rs5dst1,t2d is
calculated using the exactly solved polarizability model, yielding different results and predicting an echo
signal.
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Multidimensional nonlinear spectroscopic techniques are
emerging as powerful tools that can reveal the microscopic
structure and dynamics of condensed phases and biomol-
ecules on ultrafast(subpicosecond) time scales. For example,
they offer the possibility of differentiating between homoge-
neous and inhomogeneous broadening processes, which is
difficult with traditional spectroscopy[1]. The fifth-order,
two-dimensional(2D) Raman spectrum, which has been the
subject of many recent experimental[2–6] and theoretical
[7–14] investigations, is well suited to the study of low fre-
quency, intermolecular, motions in liquids. The circumven-
tion of previous difficulties by using heterodyne detection
has reinforced interest in the 2D Raman experiment[2–6].
The 2D Raman spectrum also was predicted to show an echo
feature along the diagonal time slice if intermolecular modes
were sufficiently long lived although no echo has been found
to date.

Multidimensional spectroscopy cannot achieve its full po-
tential until an unambiguous theoretical framework is avail-
able; this presents a considerable theoretical challenge. An
n-dimensional spectrum is given by ann-dimensional re-
sponse function, a quantum average of nested commutators
of n Heisenberg representation variables at different times.
Even the classical limit yields quantities that are far more
complex than familiar time correlation functions(TCF). In
fact, it has been demonstrated that nonlinear spectra cannot
be expressed exactly in terms of TCF[15].

Nevertheless, we recently proposed an approximate TCF
theory of nonlinear spectroscopy that is computationally
tractable for complex molecular condensed phase systems
and is capable of accurately describing both intermolecular
and intramolecular vibrational spectra. TCF theories are de-
sirable because they allow nonlinear spectra to be calculated
for realistic molecular dynamics(MD) models of condensed
phase systems. It is essential that the theory be tested in a
unambiguous manner. Previously we have presented explicit

calculations of the 2D Raman spectrum of liquid CS2, deter-
mined by the fifth-order response,Rs5dst1,t2d [16]. The 2D
Raman spectra were in excellent agreement with extant ex-
periments and approximate theoretical results[2,9,17]. But
the agreement does not represent a rigorous test because un-
certainties still exist in the experimental measurements and
the theoretical results use approximate methods and different
molecular models. Using the TCF theory, here we present the
2D Raman spectrum for liquid xenon using both first-order
dipole-induced dipole(FODID) and exact[many body polar-
izability (MBP)] solutions of the dipole-induced dipole po-
larizability model. Ma and Stratt[12] carried out a numeri-
cally exact simulation of the fully polarized,Rxxxxxx

s5d st1,t2d,
2D Raman spectrum of liquid Xe using the FODID model.
Exact calculations can be performed for simple, small sys-
tems[9,12,17] only because of the computational burden. In
this paper it is demonstrated that the TCF theory ofRs5d

3st1,t2d quantitatively reproduces the Ma-Stratt simulation,
providing support for its further applications to more com-
plex systems; TCF calculations with more extensive molecu-
lar models are not computationally difficult[16]. Further, the
theory predicts a very different spectrum using the MBP
model, including a significant echo feature for theRxxzzxx

s5d

3st1,t2d polarization condition that was earlier suggested to
be likely to emphasize an echo signature[18]. This echo
occurs with a period that corresponds to frequencies in the
heart of the xenon vibrational density of states(DOS), im-
plying the existence of intermolecular vibrational modes that
last for at least one full period[12].

The TCF theory describes the nonlinear response in terms
of fully anharmonic MD calculations that are supplemented
by a suitable spectroscopic(dipole and polarizability) model.
Thus, it is demonstrated here, that while exact TCF expres-
sions for nonlinear spectroscopy are not possible, effective
TCF theories can be constructed. Such theories are powerful
because they can be evaluated using atomistically detailed
MD on complex liquids and solutions. TCF theories have
distinct advantages over alternative approaches because they
eliminate the need for costly classical calculations that are*Author to whom correspondence should be addressed.
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limited to small systems and intermolecular dynamics
[9,12,17] and quantum calculations that rely on low-
dimensional model systems[19]. It then becomes possible to
predict and interpret nonlinear spectra for a wide variety of
chemically important systems. In addition to its computa-
tional tractability, the TCF theory also makes a more man-
ageable starting point for the development of theories based
on the fifth-order response function.

The development of the TCF theory ofRs5dst1,t2d will be
briefly revisited here; details are provided in our earlier work
[16]. First consider the quantum mechanical expression for
the electronically nonresonant fifth-order polarization re-
sponse [13,17]: Ra,b,g,d,e,f

s5d st1,t2d=si /"d2TrhPabst1+ t2d
3[Pgdst1d ,fPefs0d ,rg]j. In this equation,r=e−bH /Q for a
system with HamiltonianH and partition functionQ at re-
ciprocal temperatureb=1/kT, and k is Boltzmann’s con-
stant; Tr represents a trace, square brackets denote commu-
tators,P is the system polarizability tensor, and the greek
superscripts denote the elements and thus the polarization
condition being considered. The classical limit of the trace is
of order"2 and results from a combination of four two-time
correlation functions that are themselves equivalent classi-
cally.

Expanding the commutators in the above equation gives
Rs5dst1,t2d=s−1/"2dfgst1,t2d− f * st1,t2d− fst1,t2d+g* st1,t2dg.
Here, fst1,t2d=kP* st1dPst2dPl, gst1,t2d=kPst2dP P* st1dl,
f * st1,t2d=kP Pst2dP* st1dl, and g* st1,t2d
=kP* st1dP Pst2dl; an asterisk denotes the complex conju-
gate. The superscript notation onP is now suppressed and
the results apply to all possible polarizations. The angle
brackets represent an equilibrium average. The expression
inside the square brackets is the difference between the real
part of the functionsg and f , gRst1,t2d− fRst1,t2d, that must
be of order"2 in the classical limit. It is easy to show that a
multiplicative factor of leading order" can be obtained ex-
actly using frequency domain(detailed balance) relation-
ships betweeng and f, e.g., eb"v1gsv1,v2d= fsv1,v2d; the
frequency domain functions are the Fourier transform of the
time domain functions. A sum of real and imaginary parts of
a single two-time TCF then remains, and theirOs"d contri-
bution is required for the classical limit to exist in the form
of a TCF.

For a one-time correlation function,Cstd, a simple fre-
quency domain relationship exists between the real and
imaginary parts,CIsvd=tanhsb"v /2dCRsvd [20]. If a similar
relationship between the real and imaginary parts of the two-
time correlation function existed the fifth-order response
could be written as second derivatives in time of a classical
TCF, but no exact analytic relationship is possible and, there-
fore, an exact TCF theory is also not possible. However, an
approximate relationship between the real and imaginary
parts of the quantum TCF can be found for a harmonic sys-
tem with the polarizability expanded to second order in
the harmonic coordinate,Q, P=P0+P8Q+1/2P9Q2. The
real and imaginary parts are related asgIsv1,v2d
=tanhf−b"sv1/4+v2/2dggRsv1,v2d, where the subscripts
denote the Fourier transform of the real or imaginary parts of
the TCF’s, both of which are real functions of frequency.
This harmonic “reference” system is the simplest one that

produces a fifth-order response and represents the leading
contributions to the spectroscopy, analogous to IR intensities
being given by the squared dipole derivative for a mode of a
harmonic system with a linearly varying dipole[8,21]. The
result is not a harmonic theory—fully anharmonic dynamics
are used to calculate the relevant TCF—the approximation
only serves to weight the different phonon processes implicit
in the anharmonic MD as they would contribute in the har-
monic system[8].

Using this relationship, the exact quantum mechanical re-
sponse function can be written in terms of a classical TCF.
The fifth-order response function, in the classical limit"v
!kT, takes the form Rs5dst1,t2d=−b2/2f]2gRst1,t2d /]t1

2

−2]2gRst1,t2d /]t1] t2g, and gRst1,t2d→ kDPs0dDPst1dDPst1
+ t2dl, the classical two-time TCF. Here,DP=P−kPl and
the TCF is written in terms of the correlated polarizability
fluctuations[16]. This represents our TCF theory ofRs5d. The
expression is the classical limit of a more general result
which, in the case of intramolecular spectroscopy, can be
evaluated for high frequencies if one approximates the quan-
tum mechanical TCF with the(quantum corrected) classical
TCF. Because fifth-order Raman spectroscopy has primarily
been applied to intermolecular dynamics, only the classical
limit will be considered here.

Rs5dst1,t2d can be evaluated using MD and a model of the
systems polarizability. It exhibits the correct limiting behav-
iors, including giving zero signal at the origin and every-
where alongt2=0. Also, the two-dimensional spectrum for
ambient CS2, calculated using our theory, was shown to be in
excellent agreement with existing experimental and theoret-
ical work [3,9,16].

The most rigorous test of this theory is to compare the
resulting spectra to those from exact numerical results for the
same model system. To evaluate this approach exactly, the
classical limit is taken directly by replacing the commutators
with Poisson brackets. Then,Rs5d is seen to contain brackets
of variables at different times, which requires the exceed-
ingly difficult task of calculating the dependence of a many-
body dynamical variable on its initial conditions. Calculating
Rs5d in this way is only practical for small simple systems
and results for liquid xenon were reported previously[12].
To compare our theory to those results, microcanonical MD
simulations were performed for the neat liquid xenon con-
sisting of 108 atoms. The atoms interacted via a Lennard-
Jones pair potential and the systems reduced density and
temperature werers3=0.8 and kT/e=1.0 and the same
model parameters were used as in the exact calculation[12].

Results for the square of the fully polarized fifth-order
response function,uRxxxxxx

s5d st1,t2du2, within the FODID ap-
proximation, are shown in Fig. 1. The result using our TCF
theory is overlayed on the exact classical calculation per-
formed by Ma and Stratt[12]; even though an exact TCF
theory is not possible[15], the present theory is very effec-
tive. It captures the characteristic features present in the ex-
act calculation, including the same decay times and the lack
of an echo signal along the diagonal—which implies that the
intermolecular modes have lifetimes of less than a full pe-
riod. The signal is sharply peaked aroundt1<30 fs, t2
<350 fs. Decay times vary along each axis with the signal
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dying out alongt1 by 400 fs; alongt2 there is a long time
decay that continues beyond the 1 ps that is shown. In con-
trast to liquid xenon, the plot of the spectrum of CS2 [2,16] is
roughly symmetric, so the extreme asymmetry of the xenon
simulation, with the peak practically on thet2 axis, is striking
[2,9,16]. The capability of the TCF theory to correctly yield
symmetric or asymmetric spectra is further strong evidence
of its general applicability.

To highlight the effectiveness of the TCF theory, Fig. 2
shows a slice ofuRxxxxxx

s5d st1,t2du2 along t2 with t1=0. The
dashed line is from the exact classical calculation and the
solid line marked with squares represents the same result
shifted forward in time by 34.7 fs. The solid line without
symbols is from our TCF theory. The TCF result and the
time-shifted exact calculation show quantitative agreement.
The difference between the exact result and the TCF theory,
the shift in time, is very likely due to finite system size
effects on the exact calculation. Ma and Stratt were limited
to using only 32 atoms in their simulation—even within the

FODID approximation that is far less computationally de-
manding than a MBP evaluation of the polarizability. To test
the effect of the small system size they performed a simpler
calculation of a one-dimensional slice of
]2gRst1,t2d /]t1] t2ut2=0 for 32 and 108 atoms because a non-
Poisson bracket piece of the fifth-order signal with this form
may be identified[14]. The resulting line shape had the same
shape but with a time phase shift nearly identical to that
apparent in Fig. 2(see Fig. 4 of their paper), implying that
the present theory may agree even better then the figure sug-
gests[12].

Figure 3 showsuRs5dst1,t2du2 for liquid xenon using the
MBP model. The MBP result is a prediction of the experi-
mental fifth-order response function—xenon is highly polar-
izable and the FODID approximation is not strictly valid.
The use of the FODID model effectively acts to remove con-
tributions from the trace of the polarizability matrix[12]—
one of three matrix invariants(in isotropic media) that give
rise, in different combinations, to the signals for different
polarization conditions[18]. Although the trace contributions
are small in 1D correlation functions[12], in 2D correlation
functions the invariants appear as products and a zero trace
invariant kills off other significant terms that include sizable
invariants multiplied by the trace contribution[18]. Thus, the
use of the FODID approximation in the 2D correlation func-

FIG. 1. Results for uRxxxxxx
s5d st1,t2du2 using the

FODID approximation for liquid xenon. The exact classical mo-
lecular dynamics calculation(red, dark), Strattet al.was reported in
arbitrary units and is normalized here to our TCF theory data
(green, light) at the maximum point.

FIG. 2. Slices ofuRxxxxxx
s5d st1,t2du2 alongt2 with t1=0. The dashed

line represents the exact classical calculation, the line marked with
squares represents the time-shifted exact classical calculation, and
the solid line without symbols represents the result from the TCF
theory.

FIG. 3. The upper panel compares the TCF theory results for
uRxxxxxx

s5d st1,t2du2 using the MBP model(red, dark, peaks earlier) vs
the FODID approximation(green, light). The lower panel shows
uRxxzzxx

s5d st1,t2du2 for liquid xenon using the MBP model. The solid
lines parallel to thet2 axis represent the width and location of(the
beginning and end of) the echo peak along the diagonal(0.1 ps,
0.45 ps)—using the diagonal to choose the lines leads to them over-
lapping off-diagonal features in the figure. The inset shows the INM
DOS for liquid xenon with vertical lines placed to show the breath
of the vibrational periods associated with the echo peak.
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tions acts to remove significant contributions that lead to
different signals—including removing the echo contribution.

The upper panel of Fig. 3 compares results for
uRxxxxxx

s5d st1,t2du2 using the MBP model(red) and the FODID
model (green). The most notable differences are that the
MBP signal has faster decay times, along both thet1 and t2
axis, and the peak is shifted to earlier times alongt2. The
signal is characterized by a strong peak aroundt1
<45 fs, t2<125 fs and dies out by 200 fs along botht1 and
t2. As in the FODID approximation, no echo signal appears
along the diagonal and the signal appears featureless beyond
300 fs in botht1 and t2 directions. While the FODID model
captures much of the response, the distinct differences ob-
served are a result of the exclusion of the polarizability ten-
sor invariant contributions mentioned above.

The lower panel of Fig. 3 showsuRxxzzxx
s5d st1,t2du2 using the

MBP model with the instantaneous normal mode(INM ) vi-
brational DOS for xenon appearing in the inset[22]. The
presence of an echo signal for theRxxzzxx

s5d polarization condi-
tion was suggested by Fourkaset al. and only appears using
the MBP model[18]. The use of the FODID approximation
acts to remove distinguishing contributions to differing po-
larization conditions by only allowing the triple product in-
variant to contribute with varying magnitudes[12,18]. The
echo peak implies that an intermolecular mode, excited at
time zero, is still oscillating at the time of the echo. As
shown in Fig. 3, associating a period with the oscillation
leads to the first echo signature at 53 cm−1 (100 fs) and the
end of the signal occurs at a frequency of 12 cm−1 (450 fs).
The echo onset frequency is in the tail of the INM DOS and
the last echo occurs near the maximum of the INM DOS and

the echo signature spans nearly the entire INM DOS. The
appearance of an echo in such a simple liquid implies that
intermolecular modes may generally live at least a period in
more complicated liquids that have significant Lennard-
Jones interactions.

Given the present computationally tractable theory for
Rs5dst1,t2d, examining the temperature dependence of the sig-
nal for liquid xenon and for other liquids and solutions will
help establish the nature of the fifth-order Raman measure-
ment and its variability—deeply supercooled liquids might
be especially interesting considering the onset of nearly har-
monic dynamics in that regime. Using the current theory to
examine other polarizations will provide further insights into
the information content of fifth-order Raman responses of
molecular liquids. TCF theories bring the power of MD
simulations to bear on the difficult task of theoretically mod-
eling the spectroscopy of complex condensed phase chemical
systems. When multidimensional nonlinear optical experi-
ments were first proposed it was expected they could have an
impact similar to introducing higher-dimensional techniques
into NMR. A major impediment to developing and interpret-
ing these spectroscopies has been the lack of a tractable yet
accurate molecularly detailed theory of the spectroscopy and
TCF theories serve to fill this void. Lastly, further work is
needed to explain the absence of echo features in the mo-
lecular liquids studied to date.
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